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Algorithm Session Short Presentations 
•  (A. Freeman)* 
•  Soil moisture estimation using passive microwave (R. Bindlish) 
•  Soil temperature for L-band (T. Holmes) 
•  Radiometer angular response from a forest canopy (R. Lang) 
•  Effect of dew on L-band TB (B. Hornbuckle) 
•  SMEX05 vegetation validation (L. Li) 
•  A bare surface algorithm for VV & HH measurements (J. Shi) 
•  Numerical studies of exponential surface backscattering (L. Tsang) 
•  Soil moisture inversion using simulated annealing (A. Tabatabaeenejad) 
•  Soil moisture inversion algorithm case study: Soybean (Y. Du) 
•  Soil moisture estimation using active microwave (R. Bindlish) 
•  Microwave scattering model of vegetated surfaces (X. Xu) 
•  Frozen soil algorithm (T. Zhang) 
•  Use of precipitation measurements in teh SMAP algorithms (Z. Haddad) 



•  Several retrieval approaches have been proposed using 
tau-omega model 

–  Single Channel Algorithm 
–  Multi-channel Algorithm 
–  Polarization Ratio 
–  Look-up table 
–  LPRM 

•  Current (SMEX, AMSR-E) and future datasets (SMOS, 
Aquarius) can be used to evaluate these approaches 

•  These have been tried and evaluated using AMSR-E 
observations 

•  Each approach has its advantages and disadvantages 
•  Performance can be evaluated using in-situ observations 

from validation watersheds (Little Washita, OK; Little 
River, GA; Walnut Gulch, AZ; Reynolds Creek, ID) 

Soil moisture estimation using Passive Microwave 

Error Statistics for Dsc (2002-2007) 
Algorithm SEE Bias R N 

A 0.074 0.052 0.464 3823 
B 0.063 0.044 0.330 4366 
C 0.039 0.008 0.542 3747 
D 0.181 0.164 0.640 3499 

R. Bindlish 



Soil Temperature for L-band
Thomas Holmes, USDA ARS Hydrology and Remote Sensing Lab

• SCA and LPRM soil moisture retrievals have 
successfully used Ka-band (TB,37V) derived soil 
temperature. 

• Can Ka-band be used to analyze potential ancillary soil 
temperature data for SMAP? 

• Is ancillary T for SMAP available for study?
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Radiometer Angular Response from  
a Forest Canopy (Models vs Data) 
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R. Lang, George Washington University





SMEX05 Vegetation Validation
E.R. Hunt, Jr./USDA, L. Li/NRL, T. Yilmaz/GMU

The Normalized Difference Infrared Index (NDII) is 
linearly related to canopy water (EWT):

NDII = (R0.85-R1.65)/(R0.85+R1.65) 
Assuming linear allometric relationships, the VWC is 

then linearly related to EWT and NDII 



A Bare Surface Algorithm for VV&HH measurementsA Bare Surface Algorithm for VV&HH measurements

Technical Concept:
1) Most reliable relation: Rvv=f(Rhh) 
2) Inversion requires Srvv≈f(Srhh) 
3)   How to reduce speckle effect?

Validation from Umich’s  ground 
experiment data (Oh et al., 2004)

Algorithm Development 
1) Numerical simulation for a 

wide range database by AIEM 
to develop the algorithm

2) Using and one of   or  
to reduce speckle effect

3) Develop the roughness index 
and the relationship of 
roughness parameters at 
different polarization

4) Validation with the field 
experimental data

Major Problems
1) High variability of roughness 
impacts at different polarizations
2) Independent speckle effect

Basic Inversion Concept

L-band
Two functions: 1) Rpp-polarization 
magnitudes and 2) Srpp-roughness

Algorithm

With a technique to select 
solution in multi-solution cases
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Numerical Studies of Exponential Surface 
Backscattering

• It is common to use an exponential correlation function model for soil surfaces
– Two parameters: rms height and correlation length

• Radar ATBD members are conducting a study using MOM (mostly 2-D, some 3-D 
surfaces) for 1.26 GHz, 40 degrees backscatter [Johnson, Moghaddam, Shi, 
Tsang]
– Comparing with SPM, AIEM, SSA, and other theories
– Tabling results for rms height 0.1, 0.5:0.5:3 cm and L=[5 10 20]xheight

• Still compiling results – to date, IEM and SSA yield very similar predictions, some 
evidence of overprediction of MOM VV NRCS for rougher surfaces

• Only part of the soil moisture retrieval but we have the tools at hand to do this now

L. Tsang, U. Washington



3D and 2D Comparisons for Backscattering Coefficients 
and Emissivities of Bare Soil Surfaces

Parameters for 3D cases Backscattering coefficients  for 3D case1

Emissivities for 3D case1

soilε
iθ

freq
(GHz)

Correlation 
Length(cm)

RMS 
Height(cm) 

Case1 1.5 40 8.4 1.12
15.34+
3.66i 

Case2 1.26 40 10.0 2.0
10.14+
0.82i

V H V-H Comments

MoM 0.7674 0.5966 0.1708 RWG (Zhou et
al., 2004)
Energy
conserve
1.0074 for v,
0.9967 for
h ,UW

AIEM 0.7474 0.5914 0.1560 (Chen et al.,
2003)

Modified
AIEM

0.7416 0.5919 0.1497 (Wu et al.,
2008)

SPM 0.7487 0.5742 0.1745 (Tsang et al,
2001)

Smooth 0.7367 0.5439 0.1928

VV HH VV-HH Comments

MoM -11.98 -15.00 3.02
Pulse (Li et 

al. 
2005),UW

MoM -10.70 -15.92 5.22

RWG (Zhou 
et al., 

2004),UW, 
more 

accurate 
than pulse

AIEM -12.44 -14.35 1.91
(Chen et al., 

2003)

Modified 
AIEM

-11.31 -15.72 4.41
(Wu et al., 

2008)

SPM -9.48 -14.95 5.47
(Tsang et al, 

2001)

Dubois -13.39 -15.96 2.57
(Dubois et 
al.,1995)

Experime
ntal

-9.1 -14.2 5.1
Michigan 

data (Oh et 
al.1992)



VV HH VV-HH Comments

MoM -9.72 -13.99 4.27 RWG( Zhou et al., 
2004),UW

AIEM -11.46 -11.39 -0.07 Chen et al., 2003

Modified 
AIEM

-9.94 -12.95 3.01 Wu et al., 2008

SPM -7.39 -12.36 4.97 (Tsang et al., 2001)

Dubois -12.83 -14.19 1.36 (Dubois et 
al.,1995)

V H V-H Comments

MoM 0.8736 0.7395 0.1341

RWG (Zhou 
etal 2004), 

Energy 
conserve

0.0141 for h, 
0.0199 for 

v,UW

AIEM 0.8330 0.7119 0.1211
(Chen et al., 

2003)

Modified  
AIEM

0.8270 0.7132 0.1138
(Wu et al., 

2008)

SPM 0.8356 0.6940 0.1416
Tsang et al., 

2001

Smooth 
surface

0.7450 0.5525 0.1925

iθ

Backscattering coefficients  for 3D case2 Emissivities for 3D case2

soilεfreq
(GHz)

Correlation 
Length(cm)

RMS 
Height(cm) 

Case2 1.26 40 10.0 2.0
10.14+
0.82i

Parameters for 3D case 2



2D Results of Backscattering and 
Emissivities

V H V-H Comments

MoM 0.7795 0.5921 0.1874 Rooftop
Energy conserve : 
0.9971 for v,  
0.9993 for h, UW

AIEM 0.7449 0.5999 0.1450 Peng Xu, Wuhan U

SPM 0.7985 0.6038 0.1947

Smooth 0.7369 0.5441 0.1928

VV HH VV-HH Comments

MoM -9.11 -12.59 3.48 Rooftop,UW

MoM -8.83 -11.91 3.08
Joel Johnson, 

OSU

AIEM -9.78 -11.61 1.83
Peng Xu,
Wuhan U

AIEM -10.63 -11.60 0.97 J.C.Shi,UCSB

IEM -8.28 -11.75 3.47
Joel Johnson, 

OSU

SPM -7.56 -12.76 5.20

freq
(GHz)

Correlation 
Length(cm)

RMS 
Height(cm) 

Case1 1.26 40 30.0 3.0

12.274 + 

1.016i

Backscattering coefficients for 2D case

Emissivities for 2D case

More 2D and 3D results are in 
forthcoming team report.

Parameters for 2D case 1

iθ soilε



VV HH VV-HH Comments

MoM -10.62 -15.05 4.43 Rooftop 
UW

AIEM -11.01 -15.32 4.31 Peng Xu,
Wuhan U

IEM -9.70 -14.84 5.14 Joel 
Johnson, 
OSU

SPM -9.36 -14.84 5.47

EBCM -8.95 -13.96 5.01 Michigan

freq
(GHz)

Correlation 
Length(cm)

RMS 
Height(cm) 

Case2 1.50 40 8.4 1.12

15.34 + 

3.66i

iθ

Backscattering coefficients for 2D case

Emissivities for 2D case

More 2D and 3D results are in 
forthcoming team report.

Parameters for 2D case 2

soilε

V H V-H Comments

MOM 0.7795 0.5921 0.1874 Rooftop 
Energy 
conservation: 
0.9971 for v,  
0.9993 for 
h,UW

AIEM 0.7449 0.5999 0.1450 Peng Xu, 
Wuhan U

SPM 0.7985 0.6038 0.1947

Flat 0.7369 0.5441 0.1928



Soil Moisture Inversion using Simulated Annealing
Alireza Tabatabaeenejad and Mahta Moghaddam
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1. Simulated Annealing is a powerful, 
but slow, tool for accurately 
estimating surface soil moisture.

2. The method has a good noise 
response.

3. The forward model used to 
demonstrate is first-order SPM. 
More accurate forward models can 
be used.



mv mv

VV, HH VV-HH Entropy VV, HH VV-HH Entropy

Day #1

Day #2

Day #4

Day #5

Feature extraction numerical study

Goals:
• To identify features sensitive to mv while 
insensitive to roughness. 
• To investigate the impact of vegetation growth 
stage.

Setup:
• Ground truth taken from Yueh et al. (1992).
• rms height takes values {0.7, 1, 1.5, 2} times 
original value.
• Direct surface contribution via EAIEM 
(Du,2008)

Soil Moisture Inversion Algorithm Case Study: Soybean 

Yang Du1 and Leung Tsang2

1. Zhejiang Univ., China
2. The Univ. of Washington, USA

Determine
growth stage

Early stage?

Dubois et al. 1995
or alternative

Entropy

Y

N

VV
HH

Proposed inversion algorithm



Soil moisture estimation using Active Microwave 

•  Soil Moisture estimates better for 
areas with low to moderate vegetation 
•  Extreme field conditions led to higher 
retrieval error 
•  Introducing a simple vegetation 
parameterization can improve radar 
soil moisture estimation 

Radar Obs σo 

Water Cloud model 

Vegetation Parameterization 
(Eom and Fung, 1984) 

Scattering Model 
(Dubois et al, 1985) 

R. Bindlish 

RMSEsm=0.0616 cm3cm-3 

Bias = 0.0128 cm3cm-3 



Single Cylinder Scattering

1. Infinite Cylinder Approximation

• Quasi-static approach

• Volume integration approach

2. Discrete Dipole Approximation

Vegetation Layer of Cylinders

1. Vector Radiative Transfer Theory (First order)

2. Distorted Born Approx. 

Infinite Cylinder Approx. Discrete Dipole Approx.

Incident wave 
polarization

v h v h

Scattering coef. 7.16e-3 3.32e-4 4.69e-3 2.95e-4

Absorption coef. 7.01e-3 3.86e-4 4.00e-3 2.06e-4

Extinction coef. 1.42e-2 7.18e-4 8.96e-3 5.01e-4

Optical theorem 1.48e-2 8.64e-4 8.95e-3 5.01e-4

error  with Opt Thm 4.6% 16.7% 0.12% 0.048%

Microwave Scattering Model of Vegetated Surfaces 

Xiaolan Xu, Leung Tsang, University of Washington

Sensitivity to soil moisture

Model Comparison

Energy Conservation Check (case 2)

Sensitivity to VWC

F=1.26GHz, a = 2mm,L = 50cm, 
Hlayer = 50cm, n0 = 900/m3

Case 1: small radius (1mm) Case 2: large radius (10mm)



Frozen Soil Algorithm
Objective: To produce blended daily soil temperatures at 
various depths and daily soil freeze/thaw depths at regional and 
global scales. 

In-situ Measurements
(soil temperatures and
soil freeze/thaw depths)

Satellite Remote Sensing
(Visible and microwave 
Sensors)

Modeling (analytical 
and numerical  solutions)

Daily soil temperatures 
at various depths

Daily soil 
freeze/thaw depths

Frozen Soil Algorithm

Tingjun Zhang, NSIDC



Conductive heat transfer 
with phase change, 
including: (i) seasonal snow 
cover and peat layer, (ii) 
variable physical and 
thermal properties, (iii) heat 
flux lower boundary, (iv) 
primarily driven by air 
temperature or surface 
energy balance if available.

In-situ Data Remote Sensing Modeling
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Use of Precipitation measurements in the SMAP algorithms:

TRMM-3B42, GPCP, CMAP, CMORPH, PERSIANN, SCAMPR, NRL-blend, RSS …

- quantify how current High Resolution Precipitation Products correlate with soil 
moisture

* identify different estimators that can be derived from HRPP, such as "surface 
accumulation" or "area-time integral",

* quantify the correlation of different estimators at t-minus-delta with delta(soil-
moisture),

* reconcile with a water balance model that forecasts what would be expected

- quantify the effect of different measures of uncertainty in the available precipitation 
products on the soil moisture estimation

* effect of detection/false-alarm issues (discrimination between clouds and precip)
* effect of conditional spatial covariance matrix (given rain) at what scale
* how do these affect SMAP algorithms (e.g. at what level of uncertainty would 

precip "info" be useless)

Comments from Ziad Haddad (JPL)




